3.289 \(\int \frac {(a+\frac {b}{x})^n}{x^2 (c+d x)} \, dx\)

Optimal. Leaf size=84 \[ -\frac {d \left (a+\frac {b}{x}\right )^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c (n+1) (a c-b d)}-\frac {\left (a+\frac {b}{x}\right )^{n+1}}{b c (n+1)} \]

[Out]

-(a+b/x)^(1+n)/b/c/(1+n)-d*(a+b/x)^(1+n)*hypergeom([1, 1+n],[2+n],c*(a+b/x)/(a*c-b*d))/c/(a*c-b*d)/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {514, 446, 80, 68} \[ -\frac {d \left (a+\frac {b}{x}\right )^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c (n+1) (a c-b d)}-\frac {\left (a+\frac {b}{x}\right )^{n+1}}{b c (n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x)^n/(x^2*(c + d*x)),x]

[Out]

-((a + b/x)^(1 + n)/(b*c*(1 + n))) - (d*(a + b/x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (c*(a + b/x))/(a*
c - b*d)])/(c*(a*c - b*d)*(1 + n))

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rubi steps

\begin {align*} \int \frac {\left (a+\frac {b}{x}\right )^n}{x^2 (c+d x)} \, dx &=\int \frac {\left (a+\frac {b}{x}\right )^n}{\left (d+\frac {c}{x}\right ) x^3} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {x (a+b x)^n}{d+c x} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\left (a+\frac {b}{x}\right )^{1+n}}{b c (1+n)}+\frac {d \operatorname {Subst}\left (\int \frac {(a+b x)^n}{d+c x} \, dx,x,\frac {1}{x}\right )}{c}\\ &=-\frac {\left (a+\frac {b}{x}\right )^{1+n}}{b c (1+n)}-\frac {d \left (a+\frac {b}{x}\right )^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c (a c-b d) (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 77, normalized size = 0.92 \[ \frac {(a x+b) \left (a+\frac {b}{x}\right )^n \left (b d \, _2F_1\left (1,n+1;n+2;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )+a c-b d\right )}{b c (n+1) x (b d-a c)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x)^n/(x^2*(c + d*x)),x]

[Out]

((a + b/x)^n*(b + a*x)*(a*c - b*d + b*d*Hypergeometric2F1[1, 1 + n, 2 + n, (c*(a + b/x))/(a*c - b*d)]))/(b*c*(
-(a*c) + b*d)*(1 + n)*x)

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\left (\frac {a x + b}{x}\right )^{n}}{d x^{3} + c x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^2/(d*x+c),x, algorithm="fricas")

[Out]

integral(((a*x + b)/x)^n/(d*x^3 + c*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a + \frac {b}{x}\right )}^{n}}{{\left (d x + c\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^2/(d*x+c),x, algorithm="giac")

[Out]

integrate((a + b/x)^n/((d*x + c)*x^2), x)

________________________________________________________________________________________

maple [F]  time = 0.56, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +\frac {b}{x}\right )^{n}}{\left (d x +c \right ) x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x)^n/x^2/(d*x+c),x)

[Out]

int((a+b/x)^n/x^2/(d*x+c),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a + \frac {b}{x}\right )}^{n}}{{\left (d x + c\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^2/(d*x+c),x, algorithm="maxima")

[Out]

integrate((a + b/x)^n/((d*x + c)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+\frac {b}{x}\right )}^n}{x^2\,\left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/x)^n/(x^2*(c + d*x)),x)

[Out]

int((a + b/x)^n/(x^2*(c + d*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + \frac {b}{x}\right )^{n}}{x^{2} \left (c + d x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)**n/x**2/(d*x+c),x)

[Out]

Integral((a + b/x)**n/(x**2*(c + d*x)), x)

________________________________________________________________________________________